Progressive Blind Deconvolution
نویسندگان
چکیده
We present a novel progressive framework for blind image restoration. Common blind restoration schemes first estimate the blur kernel, then employ non-blind deblurring. However, despite recent progress, the accuracy of PSF estimation is limited. Furthermore, the outcome of non-blind deblurring is highly sensitive to errors in the assumed PSF. Therefore, high quality blind deblurring has remained a major challenge. In this work, we combine state of the art regularizers for the image and the PSF, namely the Mumford & Shah piecewisesmooth image model and the sparse PSF prior. Previous works that used Mumford & Shah image regularization were either limited to nonblind deblurring or semi-blind deblurring assuming a parametric kernel known up to an unknown parameter. We suggest an iterative progressive restoration scheme, in which the imperfectly deblurred output of the current iteration is fed back as input to the next iteration. The kernel representing the residual blur is then estimated, and used to drive the non-blind restoration component, leading to finer deblurring. Experimental results demonstrate rapid convergence, and excellent performance on a wide variety of blurred images.
منابع مشابه
PSO-Optimized Blind Image Deconvolution for Improved Detectability in Poor Visual Conditions
Abstract: Image restoration is a critical step in many vision applications. Due to the poor quality of Passive Millimeter Wave (PMMW) images, especially in marine and underwater environment, developing strong algorithms for the restoration of these images is of primary importance. In addition, little information about image degradation process, which is referred to as Point Spread Function (PSF...
متن کامل1 Mathematical models and practical solvers for uniform motion deblurring
Recovering an un-blurred image from a single motion-blurred picture has long been a fundamental research problem. If one assumes that the blur kernel – or point spread function (PSF) – is shift invariant, the problem reduces to that of image deconvolution. Image deconvolution can be further categorized as non-blind and blind. In non-blind deconvolution, the motion blur kernel is assumed to be k...
متن کاملLearning Blind Deconvolution
In this work, we propose a novel prior term for the regularization of blind deblurring methods. The proposed method introduces machine learning techniques into the blind deconvolution process. The proposed technique has sound mathematical foundations and is generic to many inverse problems. We demonstrate the usage of this regularizer within Bayesian blind deconvolution framework, and also inte...
متن کاملThreshold based Approach for Image Blind Deconvolution
Having attractiveness in digital cameras, the digital image processing is getting more imperative nowadays. One of the most common problems facing with digital photography is noise and blurring that needs restoration. In this paper, we present a new method for image blind deconvolution [2]. The Proposed Method employs threshold based image restoration technique in blind image deconvolution. The...
متن کاملBlind Deconvolution and Blind Source Separation (A Summary)
1 Summary The goal of blind deconvolution and source separation is to unravel the effects of an unknown linear transformation on a unknown signal source. For blind deconvolution, the transformation is a linear finite-impulse response (FIR) filter, and for blind source separation it is a matrix of mixing coefficients. A general architecture for these blind adaptive algorithms consists of an adju...
متن کامل